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Abstract. The wheat industry is in need of an automated, economical, and rapid means to detect 
whole wheat kernels internally infested with insects.  The feasibility of the Perten Single-Kernel 
Characterization System (SKCS) to detect internal insect infestations was studied.  The SKCS 
monitors compression force and electrical conductance as individual kernels are being crushed.  
Samples of hard red winter wheat (HRW) and soft red winter wheat (SRW) infested with rice weevil 
and lesser grain borer were run through the SKCS and the conductance/crush signals saved for 
post-run processing.  It was found that a discontinuity is often present in the conductance signal of 
an insect-infested kernel.  An algorithm was developed to classify kernels as infested, based on 
features of the conductance signal.  Average classification accuracies for all wheat samples were 
24.5% for small-sized larvae, 62.2% for medium-sized larvae, 87.5% for large-sized larvae, and 
88.6% for pupae.  There were no false positives (sound kernels classified as infested).  The 
classification algorithm is robust for a wide range of moisture contents.  Classification accuracy was 
somewhat better for kernels infested with rice weevils than for lesser grain borer, and classification 
accuracy was better for HRW than for SRW. 

Keywords: rice weevil, lesser grain borer, SKCS, conductance



 

2 

Introduction 
Internal insect infestation of wheat kernels degrades quality and value of wheat and is one of 
the most difficult defects to detect.  Insect infestation causes grain loss by consumption, 
contaminates the grain with excrement and fragments, causes nutritional losses, and degrades 
end-use quality of flour (Sanchez-Marinez et al., 1997; Pederson, 1992).  Stored grain is 
vulnerable to both external and internal damage by insects, but internal infestations are the 
most difficult to detect and are generally considered the most damaging (Pederson, 1992).  
There are five species of insects where the larval and pupal stages develop inside wheat 
kernels for four to seven weeks, without any visible indication, until they mature and emerge 
from the kernel via an exit tunnel.  These are the rice weevil [Sitophilus oryzae (L.)], maize 
weevil [Sitophilus zeamais (Motsch)], granary weevil [Sitophilus granarius (L.)], lesser grain 
borer [Rhyzopertha dominica (F.)], and angoumois grain moth [Sitotroga cerealella (Olivier)].  
Infestations from the angoumois grain moth are usually limited to the top few inches in the bin of 
stored grain, while the other insects can infect grain in pockets anywhere in the bin.  Weevils 
and lesser grain borer insects have been identified as the most common internal infesters of 
wheat (Storey et al., 1982).   
U.S. Wheat Standards consider kernels as insect damaged when exit tunnels or boring are 
observed on the kernel surface (Federal Grain Inspection Service, 1997).  However, internal 
insects have already emerged from these kernels.  A wheat load is reduced to U.S. Sample 
Grade if 32 or more insect-damaged kernels are found in 100 grams of wheat (Federal Grain 
Inspection Service, 1997).  Inspecting for insect-damaged kernels is labor intensive and may 
miss many infested kernels where an immature insect has not emerged from the kernel.  Storey 
et al. (1982) reported that as many as 12% of all wheat samples from export loads have hidden 
internal insects but go undetected during the normal grain inspection process.  Grain inspectors 
at milling facilities need to know the quantity of hidden insect damage so that loads with 
excessive infestations can be cleaned or diverted for other uses. 
Several methods have been or are currently under development to detect hidden insects in 
whole wheat kernels.  Pederson (1992) reviewed many of the techniques for detecting internal 
insects.  These include staining the egg plug to detect weevil infestation, flotation methods, x-
ray imaging, acoustic detection of larvae movement and chewing, carbon dioxide measurement, 
and staining of amino acids specific to insect body fluids.   However, most of these methods 
have only achieved limited implementation either because they are slow, labor intensive, 
expensive, or can only detect specific insect species.  In more recent work, Haff (2001) 
developed an image analysis program to automatically scan x-ray images for insect infestation.  
Other researchers have investigated use of near-infrared (NIR) spectroscopy to detect hidden 
insects in wheat kernels (Dowell et al., 1998; Ridgway and Chambers, 1996; Ghaedian and 
Wehling, 1997).  Both x-ray and NIR spectroscopy can detect internal insects with high 
accuracy and cost of the required equipment has fallen in the past few years.  However, x-ray 
and NIR instrumentation are still cost prohibitive for many commercial applications, and current 
NIR instrumentation requires complex procedures and calibrations.  Thus, no economically 
viable and simple equipment utilizing these technologies has yet become available for grain 
inspectors to use to detect internal insects.  
The single-grain characterization system (SKCS) (SKCS 4100, Perten Instruments, Springfield, 
IL) measures kernel weight, moisture content, diameter, and hardness at a rate of two kernels 
per second, and reports the average and standard deviation of a 300-kernel sample.  These 
systems are used worldwide in many inspection facilities to determine wheat physical 
properties.  To measure moisture content and hardness, electrical conductance and 
compression force are monitored and stored by the SKCS, while a kernel is being crushed 
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between a wheel and crescent (Martin et al., 1993).  Since an insect has a much higher 
moisture than normal wheat kernels, it may be that the presence of internal insects can be 
detected through processing of the conductance signal during crushing.  The objective of this 
study is to determine the feasibility of detecting live, internal insects with the standard hardware 
of the SKCS. 

Experimental Procedures 

Insect rearing and maturity estimation 

Two species of insects, rice weevils [Sitophilus oryza (L.)] and lesser grain borer [Rhyzopertha 
dominica (F.)], were reared with two different wheat classes, hard red winter (HRW) and soft red 
winter (SRW), for a total of four insect-wheat class combinations. The HRW was grown in 
central Kansas and harvested in 2000, while the SRW was grown in Ohio and harvested in 
1994.  Both stocks of wheat were stored at 10 °C after harvest.  Insect rearing was performed in 
quart-sized jars with screen lids, with approximately 350 g of wheat and 300 adult insects. The 
jars were incubated at 26 °C and 60% RH.  Insect rearing for each insect-wheat class 
combination was performed at different times.  Starting at the second week after incubation 
began, approximately 1500 kernels were removed on a weekly basis until the end of the sixth 
week.  These samples were radiographed using a cabinet x-ray system (Faxitron Corp, 
#43855A, Wheeling, IL), using 13 x 18 cm film (Kodak Industry M film, France), at an exposure 
of 18 kVp and 3 mA for two minutes.  Observation of these films under a microscope allowed 
segregation of infested from non-infested (sound) kernels.  Approximately 300 of the infested 
kernels were set aside and placed on thin plastic sheets, secured with double-stick tape, and 
radiographed again for maturity estimation.  To determine insect maturity, this x-ray film was 
digitally scanned at 800 pixels/inch (Expression 1680, Epson America, Long Beach, CA), and 
the larvae cross-sectional area was measured in an image-editing program (Adobe Photoshop 
LE 5.0, Adobe systems, San Jose, CA).  Kernels were assigned to one of five categories, as 
listed below, based on the insect larvae size and/or insect morphology: 
 
1. Sound: no insect present 
2. Small larvae: larvae area approximately 0.20 to 0.7 mm2 
3. Medium larvae: larvae area approximately 0.9 to 1.4 mm2  
4. Large larvae: larvae area approximately 1.6 to 2.8 mm2 
5. Pupae: pupae area approximately 1.6 mm2 or larger with limbs, snout, and/or wing features 

visible 

For rice weevils, the small larvae approximately corresponds to the first and second larval instar 
stage, while the medium and large larvae correspond to the 3rd and 4th larval instar stage, 
respectively (Kirkpatrick and Wilbur, 1965).  The lesser grain borer is a smaller insect than the 
rice weevil.  Thus, within each size category the lesser grain borers are likely more mature than 
the rice weevils; thus, the categories of small, medium, and large larvae would likely refer to a 
more mature insect for lesser grain borer than rice weevil.  
The number of kernels used for the study from all combinations of insect and wheat class are 
listed in Table 1.  The sound kernels had a mean moisture content (MC) of 12.1% (wet basis), 
with a standard deviation (SD) of 0.87%.  Normally, non-infested kernels removed from one 
homogenous load would have an MC standard deviation of about 0.3 to 0.4%.  The large SD for 
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the sound kernels in this study is at least in part due to kernels being removed and MC 
measured over the three-month duration of the study.  In addition to these sound kernels, sets 
of 25 HRW kernels and SRW kernels were hydrated up to 14%, 16%, 18%, and 20% MC (wet 
basis) to determine if insect-infested kernels could be distinguished from very moist kernels.  
These kernels were tempered by sufficient quantities of water to raise the MC to the desired 
level.   The sample was stored over 24 hours to allow moisture to equilibrate. 
 
Table 1. Number of kernels used from each insect � wheat class combination. 

 

Insect maturity rice weevil-HRW rice weevil- SRW 
lesser grain 
borer - HRW 

lesser grain 
borer - SRW 

Small larvae 113 101 106 112 

Medium larvae 111 101 103 104 

Large larvae 122 110 105 125 

Pupae 113 109 106 129 

Sound 343 352 350 340 
Note: HRW = Hard Red Winter Wheat; SRW = Soft Red Winter Wheat 

Conductance measurement 

After insect maturity was determined, kernels were processed with the SKCS in sets of 20 to 40 
kernels.  Normal moisture and hardness data that the SKCS automatically computes was saved 
for analysis.  Additionally, the SKCS software was set to save the conductance and crush 
signals of each kernel for off-line analysis.  In the SKCS, a kernel acts as one resistor in a two-
resistor voltage divider circuit (Martin et al., 1993).  Conductance is monitored by measuring the 
voltage across the kernel.  A low-voltage measurement corresponds to low-kernel resistance, 
which is typical of high-MC kernels.  The SKCS digitizes the voltage across the kernel at a rate 
of 4000 Hz while the kernel is being crushed, but only every 5th data point is actually stored.  
Data acquisition is triggered by the compression force exceeding a factory-set threshold.  A 
kernel remains between the crescent and wheel of the SKCS for approximately 150 ms while it 
is being crushed, so each conductance signal contained 135 to 140 points.   

Processing of conductance signals 

If a live insect is present inside a kernel, there will likely be a large downward slope in the 
conductance signal.  This is likely caused by high-moisture insect parts and fluid coming into 
contact with the crushing wheel or crescent and drastically lowering its resistance.  
Occasionally, a dry non-infested kernel will have a sharp peak in its conductance signal that will 
include a downward slope of similar magnitude caused by insects.  However, these slopes 
always occur at levels greater than the initial voltage level across the kernel.  This can be seen 
in Figure 1, which displays typical conductance signals from several types of kernels.  
Furthermore, the range of voltage levels in the conductance signal, when computed as the 
difference of the initial voltage level from the minimum voltage level, will be low for sound 
kernels of all moisture levels and much higher for kernels infested with insects.  Thus, a 
program was written to read all stored conductance signals, and compute the maximum 
downward gradient value and the range of voltages.  Gradient was computed using equation 1 
and voltage range computed using equation 2. 
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V0 and Vmin are the initial and minimum voltages measured across the kernel, respectively; and 
Vx, Vx+1 are the voltages of sampled points x and x+1, respectively.  When Vx was greater than 
Vo, the gradient values were set to zero since these gradients would be in peaks in the 
conductance signal due to dry kernels. 
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Figure 1.  Typical conductance signals as kernels are being crushed in the SKCS 4100. 

Results and Discussion 

Classification from conductance signal features 

Figure 2 displays a scatter plot of all maximum gradient values and voltage ranges in the 
conductance signals from all kernels.   The ellipse with a solid boundary is a 99.90% prediction 
interval for sound kernels of all MCs.  Since it is important to minimize false-positive errors 
(sound kernels classified as infested), a 99.99% prediction ellipse was computed and all data 
points falling outside this ellipse were classified as insect infested.  There were no false-positive 
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errors made using this classification scheme with the data collected; however, a false-positive 
classification error of 0.01% might be expected.  Classification results for each insect�wheat 
class combination are shown in Figure 3.  Higher classification accuracy is obtained for more 
mature insects.  This is expected given the insect size increases with maturity.  Average 
classification accuracy for all infested kernels from both wheat classes were 24.5% for small 
larvae, 62.2% for medium larvae, 87.5% for large larvae, and 88.6% for pupae.  The best 
classification results were obtained for HRW infested with rice weevils.  Generally, HRW had 
better classification results than SRW, and more rice weevil infestations were detected than 
lesser grain borer infestations.  Rice weevils are a larger insect than lesser grain borers and that 
may have been a factor for their higher detection rate.  Additionally, HRW may break apart more 
suddenly than SRW, causing insect fluids to contact the SKCS wheel or crescent more abruptly, 
leading to larger gradients in the conductance signals.  However, more study would be needed 
to confirm if the differences in detection accuracies between wheat classes and insect species 
are indeed significant.  Table 2 summarizes the values of conductance signal voltage range and 
maximum gradient found for all the sample sets used in this study.  Analysis of variance found 
that wheat class, wheat moisture, and insect species did not cause any means for maximum 
gradient or voltage range to be significantly different at the 95% confidence level.  Means of 
tempered sound kernels with high MCs were not significantly different than means of sound 
kernels that were pulled from the incubation jars.  Only insect maturity caused significantly 
different means.  In all cases, kernels infested with insects past the small larval stage had 
significantly different means than sound kernels at the 95% confidence level.   Kernels infested 
with small larvae did not have significantly different means than sound kernels at the 95% 
confidence level. 
Classification results obtained from the SKCS data compare favorably with x-ray imaging and 
near-infrared spectroscopy methods used to detect internal insects.  Human examination of x-
ray films has a higher detection accuracy for infested kernels at all maturity levels but can have 
false-positive errors of 1.0% or higher (Haff, 2001).  Computer algorithms to automatically scan 
x-ray images have similar recognition rates as the SKCS for insect-infested kernels but have 
higher false-positive rates, about 7.4% (Haff, 2001).  Near-infrared spectroscopy methods also 
suffer from false positive errors and, additionally, kernel orientation problems (Ghaedian and 
Wehling, 1997).  Both x-ray imaging and near-infrared spectroscopy methods have the 
advantage that the insect does not need to be alive in order to be detected, and these methods 
are non-destructive.  Future work will be conducted to determine the ability of the SKCS to 
detect insect infestations where the insects are dead and dried out. 

Classification from moisture data alone 

Kernels containing internal insects tend to have higher MC�s than adjacent sound kernels.  The 
mean MC of all sound kernels used in this study was 12.1% (wet basis), with a standard 
deviation of 0.87%.  These were kernels held in the incubation jars which did not become 
infested.  Moisture contents of infested kernels were generally higher, as listed in Table 3 and 
graphically shown in Figure 4.  Kernels were classified as infested if their MC exceeded the 
sound kernel mean plus three times the SD (14.7%). This method yields fairly good 
classification results, as listed in Table 4.  However, this method was not as accurate as using 
the maximum downward gradient and range of voltages in the conductance signals.  
Furthermore, using MC alone may lead to false-positive errors if high-moisture kernels happen 
to be present in the sample.   
Classification results using moisture data alone might be improved by using the mean and 
standard deviation from the actual sample being tested.  Large samples of sound kernels 
(above 300 kernels) drawn from a homogenous load would normally have MC standard 
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deviations below 0.4%, even if a small number of infested kernels are present.  Using the 
sample moisture means and standard deviations of kernels infested with insects, listed in Table 
3, a prediction of classification accuracy can be made when a normal distribution of kernel MC 
is assumed.  For example, consider a hypothetical case where a sample of kernels has a mean 
MC of 12.5%, with a standard deviation of 0.4%.  Kernels could be classified as infested, with 
99.9% confidence, if a kernel with an MC above 13.7% was detected.  If this were the case, 
then infested-kernel detection accuracy would be approximately 29% for kernels infested with 
small larvae, 61% for kernels infested with medium-sized larvae, 80% for kernels infested with 
large-sized larvae, and 90% for kernels infested with pupae.  A false-positive rate of 0.1% would 
also be expected. 
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Figure 2.  Scatter plot of maximum downward gradient and range of voltages in conductance 
signals from all kernels. 
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Figure 3.  Classification results from all insect maturity, insect species, and wheat class 
combinations. 

 

Table 3.  Moisture contents of infested kernels. 

Moisture 
content 

Insect 
maturity Mean 

Std 
dev 

Percent 
kernels 

classified 
as 

infested 

Sound 12.07 0.87 0.0 

Small 
larvae 12.52 2.09 15.0 

Medium 
larvae 14.51 2.82 45.5 

Large 
larvae 15.90 2.62 72.0 

Pupae 16.63 2.29 81.7 
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Figure 4.  Cumulative frequency distribution of kernel moisture. 
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Table 2.  Summary of conductance signal data. 

  

maximum gradient 
A/D counts 

voltage range 
A/D counts  

wheat class insect 
insect 

maturity mean std. dev. mean std. dev. N 

hard rice weevil sound 74 a 26 860 a 233 343 

hard rice weevil small 243 b 372 1102 a 738 113 

hard rice weevil medium 787 cd 669 2019 bc 893 111 

hard rice weevil large 1268 e 433 2577 c 246 122 

hard rice weevil pupae 1151 e 402 2516 c 248 113 

hard lesser grain borer sound 61 a 10 912 a 181 348 

hard lesser grain borer small 342 b 430 1389 a  808 106 

hard lesser grain borer medium 596 c 573 1877 b 808 103 

hard lesser grain borer large 1182 e 647 2477 c 779 105 

hard lesser grain borer pupae 910 d 567 2309 c 645 106 

soft rice weevil sound 56 a 13 662 a 147 352 

soft rice weevil small 268 b 456 1092 a  828 101 

soft rice weevil medium 860 d 720 1999 bc 1043 101 

soft rice weevil large 1226 e 602 2562 c 707 110 

soft rice weevil pupae 1221 e 551 2493 c 644 109 

soft lesser grain borer sound 61 a 17 611 a 116 340 

soft lesser grain borer small 205 ba 381 920 a 674 112 

soft lesser grain borer medium 757 cd 706 1707 b  1046 104 

soft lesser grain borer large 1133 e 727 2261 c 1012 125 

soft lesser grain borer pupae 1197 e 701 2387 c 926 129 

hard 14% MC n/a sound 57 a 13 868 a 123 25 

hard 16% MC n/a sound 58 a 16 765 a 246 25 

hard 18% MC n/a sound 68 a 59 631 a 324 25 

hard 20% MC n/a sound 71 a 43 865 a 370 25 

soft 14% MC n/a sound 68 a 23 871 a 352 25 

soft 16% MC n/a sound 55 a 11 811 a 175 25 

soft 18% MC n/a sound 55 a 14 754 a 153 25 

soft 20% MC n/a sound 71 a 43 865 a 370 25 
Note: Means within each column denoted with a different letter are significantly different at the 95% confidence level. 
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Conclusion 
The method developed for detecting wheat kernels with internal insects is quite suitable for 
addition to the measurements currently made by the SKCS 4100.  The algorithm employed is 
the same for all combinations of insect and wheat classes studied.  While insect detection rates 
of the method are not as high as inspection of x-ray films with a magnifying glass, it is 
comparable to, or better than, other automatic detection methods that exist, and does not suffer 
from false-positive results.  This holds true under all reasonable moisture contents of wheat 
being inspected. The method developed only detects kernels with live internal insects.  More 
research is needed to determine the feasibility of using the SKCS to inspect grain that has been 
fumigated, causing the insects to die and lose their moisture content.  
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